Os fractais podem ser agrupados em três categorias principais. Estas categorias são determinadas pelo modo como o fractal é formado ou gerado:
- Sistema de funções iteradas — Estas possuem uma regra fixa de substituição geométrica. Conjunto de Cantor, tapete de Sierpinski, Sierpinski gasket, curva de Peano, floco de neve de Koch, curva do dragão de Harter-Heighway, T-Square, esponja de Menger, são alguns exemplos deste tipo de fractal.
- Fractais definidos por uma relação de recorrência em cada ponto do espaço (tal como o plano complexo). Exemplos deste tipo são o conjunto de Mandelbrot e o fractal de Lyapunov. Estes também são chamados de fractais de fuga do tempo.
- Fractais aleatórios, gerados por processos estocasticos dterminísticos, por exemplo, terrenos fractais e o vôo de Levy.
Ainda, também podem ser classificados de acordo com sua autossimilaridade .Eistem três tipos de autossimilaridade encontrados em fractais:
- Autossimilaridade exata: é a forma em que a autossimilaridade é mais marcante, evidente. O fractal é idêntico em diferentes escalas. Fractais gerados por sistemas de funções iterativas geralmente apresentam uma autossimilaridade exata.
- Quase-autossimilaridade: é uma forma mais solta de autossimilaridade. O fractal aparenta ser aproximadamente (mas não exatamente) idêntico em escalas diferentes. Fractais quase-autossimilares contém pequenas cópias do fractal inteiro de maneira distorcida ou degenerada. Fractais definidos por relações de recorrência são geralmente quase-autossimilares, mas não exatamente autossimilares.
- Autossimilaridade estatística: é a forma menos evidente de autossimilaridade. O fractal possui medidas númericas ou estatísticas que são preservadas em diferentes escalas. As definições de fractais geralmente implicam alguma forma de autossimilaridade estatística (mesmo a dimensão fractal é uma medida numérica preservada em diferentes escalas). Fractais aleatórios são exemplos de fractais que possuem autossimilaridade estatística, mas não são exatamente nem quase autossimilares.
Entretanto, nem todos os objetos autossimilares são considerados fractais. Uma linha real (uma linha reta Euclidiana), por exemplo, é exatamente autossimilar, mas o argumento de que objetos Euclidianos são fractais é defendido por poucos. Mandelbrot argumentava que a definição de fractal deveria incluir não apenas fractais "verdadeiros" mas também objetos Euclidianos tradicionais, pois números irracionais em uma linha real representam propriedades complexas e não repetitivas.
Pelo fato do fractal possuir uma granulometria infinita, nenhum objeto natural pode sê-lo. Os objetos naturais podem exibir uma estrutura semelhante ao fractal, porém com uma estrutura de tamanho limitado.
Legal grupo, parabens esta muito irado o seu blog
ResponderExcluirbjs gio,marina e gui